- Назначение и принцип работы,
- Основные характеристики и разновидности,
- Стандартные номиналы и комбинации,
- Примеры использования,
- Выводы,
- FAQ.
Назначение и принцип работы
Резистор, он же “сопротивление”, он же “резюк” - простейший, но, не побоюсь этого слова, важнейший элемент любой электрической цепи. Не могу представить ни одной работоспособной схемы, где не используется хотя бы один резистор. Так что же это такое и зачем он нужен? А нужен он, согласно названию, для электрического сопротивления, которое, в свою очередь, применяется для преобразования силы тока в напряжение и наоборот, а также для ограничения силы тока. Звучит немного запутанно, но на примерах все станет понятнее.Закон Ома - основное правило для электрических цепей, описывающее взаимоотношения между главными ее параметрами: напряжением, силой тока и сопротивлением. За один из этих параметров - сопротивление - и отвечает наш резистор. Закон Ома, как все фундаментальное, гениален и прост. Выглядит так:
U=I*R, где:
U - напряжение в Вольтах (В, V);
I - сила тока в Амперах (А);
R - сопротивление в Омах (Ом, Ohm). Его же, повинуясь законам математики, можно записать как: I=U/R и R=U/I. Таким образом, зная или специально задавая любые два параметра из трех, мы всегда можем точно вычислить или установить третий.
Например, если подключить светодиод, практически не имеющий внутреннего сопротивления, напрямую к питанию, мы получим в цепи ток, стремящийся к бесконечности (U/0), то есть, по факту, короткое замыкание. Светодиод попросту сгорит, не верите - проверьте. Поэтому, даже в такую простейшую схему обязательно следует добавить резистор, он уменьшит силу тока с бесконечности до того значения, которое обеспечит светодиоду долгие годы счастливой жизни. Номинал резистора подбирается исходя из вольтажа питания и характеристик светодиода, в нашем случае для подключения сигнального светодиода к Ардуино достаточно резистора на 220-240 Ом. Примечание для перфекционистов: светодиоды в зависимости от цвета (читай, состава материала полупроводника), немного отличаются по характеристикам, и для каждого из них стоило бы выбрать собственный, максимально подходящий. Но, как правило, в реальной жизни никто этим не заморачивается и применяет к ним всем первый более-менее близкий к заветным 220-240 Ом “резюк”, что вполне допустимо и оправдано.
Это лишь один простейший пример использования резистора в качестве ограничителя тока, а еще они применяются для двунаправленного преобразования “ток-напряжение”, создания делителей напряжения, в том числе для измерителей тока, в RC-цепях для сглаживания пульсаций и борьбы с “дребезгом” контактов и многого другого. Часть применений мы рассмотрим ниже на конкретных примерах.
Основные характеристики и разновидности
Резистор выбирается для каждого случая применения в зависимости от назначения и параметров конкретной цепи. К основным характеристикам относятся:- Номинальное сопротивление. Основное свойство, измеряемое в Ом и его производных: кОм, МОм и так далее.
- Точность. На сколько процентов может отличаться реальное сопротивление от заявленного.
- Предельная рассеиваемая мощность. Какую мощность способен выдерживать (рассеивать) резистор при долгой стабильной работе. Мощность измеряется в Ваттах и вычисляется по формуле P=I^2*R. Чем мощнее резистор, тем он крупнее и тем толще его “ноги”.
- Предельное рабочее напряжение. Тут все понятно и так.
- Способу монтажа: DIP и SMD,
- Конструкции: проволочный или металлопленочный,
- Характеру изменения сопротивления, и об этом поговорим немного подробнее.
Несмотря на одинаковую роль - ограничение тока - резисторы могут сильно отличаться по возможности изменения сопротивления, которое определяется стоящими перед ним задачами. Итак, резистор бывает:
- Постоянным. “Обычный” резистор с четко установленным номинальным сопротивлением, которое не меняется, во всяком случае при допустимых режимах работы.
- Переменным. Используются в качестве регуляторов-крутилок или ползунков, а также как датчиков положения.
- Подстроечным. Почти то же самое, что переменный, но более точный и не рассчитанный на частую регулировку, а потому, обычно, более мелкий и “под отвертку”.
- Термистором. Сопротивление меняется в зависимости от температуры, применяется как грубый, но надежный “градусник” в измерительных приборах и системах автоматизации.
- Фоторезистором. Сопротивление меняется в зависимости от освещенности. Применений масса, от управления освещением, до датчиков охранных систем.
- Тензорезистором. Сопротивление зависит от деформации, которая, в свою очередь, зависит от приложенной нагрузки. Используются в весах и прочих приборах для измерения физических воздействий.
- Варистором. Сопротивление зависит от приложенного напряжения, незаменим в качестве локального предохранителя. При превышении заданного порога напряжения резко увеличивает сопротивляемость, тем самым спасая остальные элементы цепи от мучительного и, порой, недешевого сгорания.
Номинал постоянного резистора в корпусе DIP кодируется на корпусе в виде цветных полос, включая класс точности и температурный коэффициент. В интернете существует масса онлайн калькуляторов, способных облегчить задачу “дешифровки” номинала.
Номинал SMD резистора пишется прямо на корпусе цифрами и буквами. Переменные, как термисторы и варисторы, метятся уже по-разному, в зависимости от типа, размера, вида и производителя. Обычно в виде надписи на корпусе. В любом случае, номинал всегда можно узнать “вручную”, имея под рукой омметр, обычно входящий в состав мультиметра. Но следует иметь в виду, что мультиметры тоже имеют ограничения, слишком малые и слишком большие значения способны зафиксировать далеко не все, особенно из класса любительских. А для сопротивлений ниже 1 Ом и выше 1 МОм вообще есть специальные приборы, называемые соответственно, миллиомметр и мегаомметр, используемые для специальных задач, таких как измерение сопротивления изоляции и заземления.
Стандартные номиналы и комбинации
Выпускаемые современной промышленностью резисторы имеют ряд стандартных номиналов. Точнее даже не ряд, а 6 рядов: Е6, Е12, Е24, Е48, Е96, Е192. Цифра после буквы “”Е” указывает на число логарифмических шагов. Не вдаваясь в матан, можно сказать так - каждый следующий ряд имеет шаг вдвое мельче, чем у предыдущего. Например, для номинала 100 по шкале E6, есть 16 номиналов по шкале Е192, от 100 до 120 включительно. Разумеется, это находит отражение и в точности резистора, от 20% для Е6, до 0.1% и выше для Е192. Требуемая точность, зависит от конкретной задачи и выбирается конструктором сети (то есть вами) каждый раз индивидуально. По опыту, для большинства DIY-проектов достаточен ряд Е24 (5%), он же широко представлен в точках продаж радиодеталей.Однако, иногда нам требуется нестандартное сопротивление, которого нет в любимом спичечном коробке с резисторами и даже в соседнем магазине. В этом случае можно и нужно прибегнуть к комбинированию двух и более имеющихся. Есть всего три вида этого приема - два простых: последовательное и параллельное соединение;
R=R1+R2+R3+....
При параллельном - как частное от деления произведения сопротивлений на их сумму, что звучит страшнее, чем выглядит:
R=(R1*R2*R3*...)/(R1+R2+R3+...)
Смешанное же считается по тем же правилам, но в два этапа, сначала разбивается на участки, которые можно посчитать по правилам последовательного или параллельного соединения, затем умозрительно заменяем эти участки на сопротивления с полученными результатами и считаем еще раз общую картину.
Примеры использования
В начале статьи я привел самый простой пример использования резистора в качестве ограничителя тока, не будем повторяться. Таким же образом резистор применяется на сигнал ключа некоторых транзисторов, к управляющей линии адресных светодиодов и так далее, где слишком высокий ток не нужен, но может сжечь электронные компоненты.Следующее интересное и востребованное применение: резистивный делитель напряжения.
Uout = Uin * R2/(R1+R2)
Нетрудно подсчитать, что, к примеру, при равных “плечах” мы получим напряжение вдвое меньше входящего. Подбирая резисторы, можно установить на выходе любое напряжение в диапазоне от U- до U+, что иногда очень полезно.
Практически, это самый простой, хоть и не самый лучший, способ получить нужное напряжение в пределах имеющегося, важно лишь помнить о мощности резисторов, если речь идет об относительно большом токе, а также о том, что КПД такого “источника питания” далек от идеального.
Принцип резистивного делителя используется в потенциометрах. Скользящий контакт делит резистор на две половины, передвигаясь между ними, благодаря чему на среднем контакте устанавливается уровень напряжения в зависимости от его положения.
Отдельный частный случай резистивного делителя - измеритель силы тока. В этом случае роль одного плеча играет измеряемая нагрузка, а второго так называемый шунт или токоизмерительный резистор. Его главной особенностью является низкое и сверхнизкое сопротивление, от 0.1 Ом. Да, он вызывает некоторое падение напряжения, несколько десятых процента, но обычно это не сказывается на работоспособности схемы. Если же подобное понижение критично, берется резистор еще более низкоомный, например 0.01 Ом, при нем падение будет в пределах сотых процента, что соизмеримо с погрешностью даже самого малошумного блока питания. Вообще, расчет резистивного датчика тока - это тема отдельной статьи, подробно останавливаться на этом здесь не будем, рассмотрим лишь принцип работы в общих чертах.
На рисунке приведена схема простого резистивного “амперметра”.
Слева цепь с нагрузкой в виде лампочки, которую следует измерять. Токоизмерительный резистор устанавливается между нагрузкой и “землей” (обведен красным квадратом), его задача формировать делитель сильно “перекошенный” в сторону нагрузки, чтобы создавать небольшое напряжение между центральным контактом делителя и “землей”. Напряжение это исчисляется милливольтами (то самое драгоценное падение на питании нагрузки, которое желательно минимизировать), поэтому справа мы пририсовали схему неинвертирующего операционного усилителя, доводящего измеряемое напряжение до размеров, уверенно определяемых АЦП. Так как чаще всего DIY- мастера используют родной АЦП Ардуино, питание усилителя и резисторы на входе подобраны под максимальное напряжение 5В.
Внимательный читатель наверняка заметит, что на неинвертирующем входе усилителя, по иронии судьбы, сигнал подается тоже через резистивный делитель (обведен синим квадратом), его соотношение плеч формирует коэффициент усиления. Вот и еще один пример применения, никуда без делителей и резисторов!
Еще одна полезная в хозяйстве схема - RC-цепь. Фактически это тоже разновидность делителя, только в качестве одного из плеч вместо резистора установлен конденсатор. Отсюда и название “RC”: R (resistor) - резистор, C (capacitor) - конденсатор. Замечательное свойство этой сборки состоит в том, что она обладает некоторой инертностью, на зарядку конденсатора через резистор требуется время и на разрядку тоже. Это время называется “постоянной времени RC-цепи”. Постоянная времени напрямую зависит от емкости и сопротивления и вычисляется по формуле: T=RC. Например, при резисторе 1 кОм и конденсаторе 100 мкф постоянная будет равна 100 мс. В течение этого времени цепь держит заряд, в результате чего сглаживаются резкие перепады, например дребезг контактов. Да, дребезг можно не только “переждать” программно, но и подавить аппаратно, что иногда гораздо проще и правильнее сделать, например, если сигнал подается на ножку прерывания.
RC-цепь отлично сглаживает помехи и усредняет неровный, колеблющийся сигнал. Вместо длинного программного кода с множеством замеров и обработкой различными алгоритмами зачастую достаточно впаять на вход АЦП две копеечные радиодетальки.
Пример из жизни. На первом скриншоте с осциллографа сигнал - нагрузка от вентилятора, как она есть. Сигнал весьма неровен, вычислять среднее арифметическое значение, медиану или применять фильтр Калмана - это грузить и без того не безграничную память и не беспредельные вычислительные ресурсы микроконтроллера, причем без гарантии на успех. Попробуем сделать это проще и изящнее. Глядя на сетку и ее масштаб, видим, что всплеск длится около миллисекунды, значит постоянная времени должна быть не меньше, а лучше больше раза в два-три. Согласно формуле подбираем конденсатор на 10 мкф и резистор на 220 Ом, расчетная постоянная 2.2 мс, вполне достаточно. Собираем, смотрим что получилось. Просто шикарная прямая линия! Снимать показания с такого сигнала - одно удовольствие для АЦП контроллера.
Необходимы Ардуино запчасти для проектов?Купить Arduino комплектующие можно в нашем магазине 3DIY!
Выводы
Великое в малом - так можно сказать про резистор и прочие минимальные электронные “кубики”: конденсатор, транзистор, диод и прочие. Несмотря на кажущуюся простоту, нельзя недооценивать важность этих фундаментальных элементов, ведь именно из них состоит все многообразие огромного мира электроники. Без знаний их свойств и возможностей невозможно познать работу более крупных деталей и компонентов, и тем более уметь полноценно применять их на практике.FAQ
1. Какой мощности следует выбирать токоизмерительный резистор, чтобы не сжечь его, ведь нагрузка в цепи может быть довольно большой?Мощность, которую рассеивает резистор, считается по формуле P=I^2*R. Например, при нагрузке 1 А и резисторе 0.1 Ом, мощность будет равна 1*1*0.1 = 0.1 Ватт, значит надо выбирать от этого значения и выше. Минимальная мощность крошечного smd резистора, какую я видел, составляет 0.25 Ватт. Проволочный резистор стандартного размера рассчитан на 5 Ватт. Есть более мощные с радиаторами охлаждения на десятки Ватт. Кроме того, всегда можно использовать резистор 0.01 Ом, он выдержит еще в десять раз больше при тех же вводных.
2. В каких случаях стоит использовать RC-цепь, а в каких предпочесть программную борьбу с помехами.
Зависит от типа сигнала, параметров RC-цепи и общей задачи. Какой длины сигнал считается полезным, а какой помехой? Какая должна быть скорость реакции системы? Может быть, нужно отреагировать быстрее, чем разрядится конденсатор? В каждом случае следует принимать отдельное решение.
3. Когда есть смысл использовать точные резисторы от 1% и меньше?
Тогда, когда это явно указано в схеме. Если не указано, то руководствуйтесь здравым смыслом, для светодиода, например, на глаз вы разницы не увидите, а если ваш прибор требует точности и не допускает разгула демократии плюс-минус 10%, то применяйте резисторы Е24 и выше, благо не такие они дорогие.
4. Что такое “керамический резистор”?
“Керамический”, также известный как “цементный”, это обычный проволочный резистор, заключенный в прочный керамический корпус. Как правило, их делают более мощными, за счет лучшего теплообмена, от 5 Ватт и выше.
5. Что такое реостат и чем он отличается от потенциометра?
Потенциометр регулирует напряжение, а реостат силу тока. Разница в подключении. У потенциометра средний контакт образует делитель напряжения с двумя крайними контактами, а у реостата средний, скользящий, контакт образует пару с одним из крайних контактов, являясь резистором переменного сопротивления. Чем больше расстояние, тем больше сопротивление и тем меньше сила тока. Таким образом, к примеру, можно регулировать яркость светодиода или скорость вращения асинхронного двигателя.